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ON THE CONTROL OF SYSTEMS WITH ELASTIC ELEMENTS * 

L. D. AKULENKO and N. N. BOLOTNIK 

Certain problems are examined of the control of the plane rotation of a rigid body 

(a flywheel) by means of an elastic rod (a shaft) at whose end a bounded moment of 

forces is applied. The main control requirement is the lessening or extinguishing 

of the flywheel's elastic vibrations at the end of the rotation process. The case 

of large torsional rigidity of the shaft, being of practical importance, is investi- 
gated and estimates of the residual vibrations are presented. The principal purpose 
of the investigation is to find certain simple practical solutions of control prob- 

lems for mechanical systems containing elastic components, using forces concentrated 

at an endpoint. Problems of optimization and control of vibratory processes in mech- 

anical systems by using lumped and distributed forces, leading to the consideration 
of hyperbolic equations, have been investigated in /l- 6/ and elsewhere. 

1, Statement of the problem, w e examine a homogeneous elastic rod (shaft) of 
constantcross-section, which can be turned around an axis OX, 
being the axis of symmetry. A controlling force moment is applied 
at the left end of the shaft (5 = 0) and an absolutely rigid body, 

is attached at the right end (z = 1) (see Fig.1). 
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symmetry; J is the moment of inertia of the flywheel rigidly at- 

tached to the shaft; 1 is the shaft's length; c = eonst is the 

torsional rigidity /7,8/; M(t) is the controlling moment. It is 

assumed that at the initial instant t = 0 the system is at an 
equilibrium position and at rest. Its motion is described by the 

differential equation with initial and boundary conditions /1,8/ 

(1.1) 

problem is posed of choosing a controlling moment d$f(t), bounded as in (l.l), which permits 

system to be turned through a specified angle 'p* in a finite time T, all vibrations hav- 

been annulled, i.e., of bringing the system (1.1) to the state 

'p (TV r) = 'p+? acp (T, 5) /at = 0, 5 E IO, 11 (1.2) 

instant Tin (1.2) is not fixed in advance but is found during the solving of the problem. 

It can be determined by prescribing additional requirements, for example, optimality in accord 

with some control performance criterion /l-4/, or by other means /6/. 

To investigate the control problem (l.l), (1.2) posed it is convenient to pass to dimen- 

sionless variables and parameters by using the relations 

(1.3) 

Here J, is some parameter characterizing the system's moment of inertia and equal, for inst- 

ance, to J or to II or to their sum. We note that (1.1) contains two typical quantities hav- 
ing the dimensionality of frequency. The quantity (c/ (Joi))‘/: characterizes the frequency of 

the system's natural oscillations, while (&2,/J,)'/* characterizes the angular rotation velocity. 

It is further assumed that their ratio is a quantity of the order of unity. Then from (1.3) 

it follows that the coefficient of cp, equal to cl M,l, also is of the order of unity. As 

a result of changes (1.3) the control problem (l.l), (1.2) is reduced to (henceforth the prim- 

es are omitted) _ 
a=e azcp 

Eafr=z, m(o,*)=a+=o av 0. 1) az'p ct. i) 
-z-=-u------ 

acp (t, 0) r= -M(t), IlwQ)1<,(1 (1.4) 
,312 ’ 

‘p (T. 4 = ‘P*> acp (T, 5) / at = 0, z E LO, 11 
-_ 

*Prikl.Matem.Mekhan .,44,No.1,22-31,198O 
13 



14 L.D. Akulenko and N.N. Bolotnik 

Here t: m: IlJ,-’ and 1~ =.I.J,-’ are numerical parameters characterizing the relative mangitudes of 

the moments of inertia of the shaft and of the flywheel, respectively. A control problem of 
form (1.4) also describes the translational movement of an elastic rod ( a distributed spring) 

in the direction of its longitudinal axis. It is assumed that a lumped force is applied to 

one of the rod's ends and that an absolutely rigid body is inflexibly attached to the other. 
In this case cp(t,z)is the absolute displacement of the rod's cross-section, z is the cross- 

section's relative coordinate, t is time, M(t) is the magnitude-bounded force along the axis 

OX, I is the rod's line density, J is the rigid body's mass, c is Young's modulus /7,8/, up* 

is the prescribed distance by which the system as a whole must be moved with vibrations ex- 

tinguished. The parameters J,, E, p have similar meaning. 

?, Turning of an elastic shaft, We consider first the case when the shaft does 

not load the flywheel, i.e., J ~_ 0. This corresponds to the zero value of parameter IL. Set- 

ting J, = IL (E = I), we construct a solution cp" of boundary-value problem (1.4) for ,I -0. 
This problem contains an inhomoqeneous boundary condition when z = 0. To construct a solu- 

tion of the inhomogeneous boundary-value problem we use the approach suggested in /9/. It is 

well known that the eiqenfunctions q&,(z) corresponding to a homogeneous boundary-value problem 

have the form cp,(s) = COSJIIZZ(~= 0,1,2,...) /8/. We seek the solution of problem (1.4) as the 

series 
(P"(t,x) - jO(..(I) cos nnx (2.1) 

Because the system of functions codn~,~&O,l] is orthogonal, the coefficients of series 

(2.1) are 

Co(t)= ~r$"(&r)[13:, c,(t)= 2~~“(t,s)cOSmzd~, n>l 
(2.2) 

0 0 

Having multiplied both sides of differential equation (1.4) by cosxu and integrated with res- 

pect to r,z@O,l], after simple manipulations we obtain the relations 

1 
F 

af2 s cp’ (t, x) cos nnx dx = q cosnn-~-nW ‘~$(t,x)cosxnxdx 
s 0 0 

Allowing for the boundary conditions and for expressions (2.21, from the relations deriv- 

ed we find the equations for the coefficients of series (2.1) and the corresponding initial 

conditions 
C," = M (1), C," + J-MC, = 2M (t), n;, I (2.3) 

c, (0) = c; (0) = 0, IL = 0, 1, . . . 

Using (2.1) and (2.3), for the variable cp we obtain the desired solution of boundary-value 

problem (1.4) with p = 0 

‘p”(t,~)= f(t--r)M(%)dr+ zl[&f sinnn(t-s)M(x)dr]cosnnx 
” ” 

If function M(t) is piecewise continuous and smooth on the intervals of continuity, series 

(2.4) converges absolutely and uniformly. The first derivatives of function cpO are mean-square 

convergent /C/. We note that the first summand in (2.4) is a solution of the ordinary differ- 
ential equation CD" = M(t) with conditions ~(0) = cp'(0) = 0. It describes the motion of an ab- 
solutely rigid body with moment of inertia II = 1,rotating around the axis OX under the force 

moment M (t). Thus, the first summand corresponds to the turning of the shaft as a whole. The 
second summand (the series) describes the elastic torsional vibrations. 

Let us consider a control M(1) of the form 

M(t) = a sign (T / 2 - t), t E [O, Tl (2.5) 

M(t) = 0, t G LO, Tl, 0 <a < 1 

Here a and T are constants; their values are determined below. We substitute M(t) from (2.5) 
into (2.4) and integrate. For 'PO and &$/at at instant t = T we obtain the expressions 
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From (2.6) it follows that when T - 4m, where m is an integer, the series equal zero and the 
identities 

cp (T, x) = aTa i 4, a’p (T, z) I at = 0, x E IO, 11 (2.7) 
hold. In order to satisfy the final conditions from (1.4) the parameter a and the integer m 
in (2.7) must be chosen so as to fulfil the relations 

Jam2 = ‘p*, a < 1 (2.8) 

From (2.8) it follows that m > L/aI/&e, while the set of integers m is determined by 

m = mi = '/%r/'p, C i - 1, i = 1, 2,. . ., if {‘izl/‘p*) = 0 (2.9) 
m = m, -= [Va r/7Q f i, i = 1, 2, . . ., if ?f9+ VCP,} # 0 

H~r~{~}and~~Jdenote the fractional and the integer parts of number k, respectively. The val- 
ues of control parameter CL are determined from 12.8) and (2.9) 

a = ~~~~~~~-~, i=i,2,... f2.10) 

Thus, from (2.7)-(2.10) it follows that by using control (2.5) we can in finite time T=4mi 
turn a homogeneous shaft through a prescribed angle q'*, having stopped all its vibrations. We 
remark that an analogous means of constructing admissible control (2.5) with one switching 
point was used in /lo/ in the study of a pendulum displacement problem. 

From (2.9) and (2.10) it follows that the value m = m,, corresponding to the least pos- 
sible shaft turning time with annihilation of vibrations when using controls of form (2.51, 
equals m* = l/z-vcp’p, if {1/21/G} = 0 and m, = P/,‘r/qJ +i if {l/aI/y+} p 0. The corresponding 
value of turning time Tu is determined by the relations 

Fig.2 

In Fig.2 the solid lines show the graph of T* as a function of shaft turning angle 6. We 
observe that according to (2.11) the minimum dimensionless time T* is not less than four for 
an arbitrarily small tp,> 0. An analogous property was noted in /ll/ in the investigation of 
the finite control problem. 

2 ?TJ i (2 v-F& 
The dashed lines show the graph of the function a((~*) = [T,(tp,)- 

exhibiting the relative difference between the turning time YZ'.,, for the elast- 
ic shaft and the least possible time 2v< viz., the time-optimal fast for the Lurning of a 
rigid body with a moment of inertia equal to II. 

If using (1.3) we go back to the dimensional variables , expression 12.11) for the least 
turning time T, under control (2.5) becomes 

For the exact solution constructed above for the control problem it proves possible to study 
T, from (2.12) for arbitrary values of the parameters. In particular, T*-t2(I&,i MO)'/2 as 
c-+ co.This signifies that the minimum time T, for turning an Gastic shaft through any speci- 
fied angle 'p*, with vibrations damped out, tends to a minimum as the rigidity c grows un- 

houndedly, i.e., to the turning time of an absolutely rigid body. 

tims3’ 
Inv~sti~ution of the control problem in the case of regular perturba- 

moment'of 
Let us study the control problem (1.11, (1.2) under the assumption that the flywheel"5 

inertia is small: J<Zl and.that its influence can be treated as a perturbation. 
Then, setting Jo =ZI, we arrive at a control problem (1.4) in which E = 1 and k*1. In 

this case, under a control (2.5) for which the parameter a is defined by (2.10), small residual 
vibrations A(p = cp - cc0 appear when t> T,. To estimate Arpwe construct the solution of 
problem (1.4) in the form 

cp = $0,~) + PP', AT = CL@ (3.1) 
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Here rp"(t,r) is solution (2.4) of problem (1.4) with p := 0 under a control M(t) of form 
(2.5). Substituting (3.1) into (1.4) and retaining terms of the first order of smallness in 
p, we obtain a boundary-value problem for function (0' 

NO final conditions are imposed on 'p' since we are studying the problem of estimating $ for 
t > T. We observe that boundary-value problem (3.21, (3.3) is analogous to problem (1.4). 

Using the approach in /9/, applied in Sect.2, we obtain the required expression of form (2.4) 
for the variable $(t,z) 

$(I,.r)= -{(M)F(+r- (3.4) 
" 

sin nn (t - z) F @) dz 
I 

cos rcn~ 
n=1 li 

Differentiating (3.4) with respect to t, we obtain 
t 

a+’ (t, I) -=- F(z)dz- dt s 
0 

(3.5) 

\ 
“C(-~~[!!cosnn(t-T)F(~)dz1cosrcn.i 

n=z 0 

Let us estimate expressions (3.4) and 13.5) for t>T, where T = 4m,. Since F (t) z 0 for 

t, T, the integration with respect to 1: in (3.4) and (3.5) is from Oto T. After the sub- 
stitution of F(t) from (3.3) into (3.4) and integration, the first summand becomes (for t> T) 

(3.6) 
8, 0 

Dy direct integration we find that 

i 
0" 
siltnfr (t -'t)F(r)& = 0, 

(3.7) 
f >T 

Thus, the second summand (the series) in (3.4) equals zf?ro. As a result it follows from (3.4)- 
(3.7) that 

9' (t, 5) 7. --aT" l/l .- const, c7$ (t. z)/ Crt Z~ 0, t > T 

Consequently, when t> T 

9 (t, x) my ‘!,aT” (1 .- p) + 0 (pB), 9” (t, z) = 0 (p’) 

4, Investigation of a singularly perturbed control problem, Let us consider 
the limiting case of practical importance when the flywheel's moment of inertia J is much great- 
er than that of the elastic shaft when the latter's torsional rigidity is sufficiently large, 
i.e., J>Il and C- iM,J. Such a situation obtains in many engineering systems. Setting Jo:- 
J (p -= 1, E+ I), we reduce boundary-value problem (1.4) to the form 

Direct verification convinces us that the function 

(4.1) 

is a solution of (4.1) when e ;i: 0 and satisfies the boundary conditions at 5 = 0 and 2 = 1. 
We note that at x =I the function 'PO from (4.2) satisfies the initial conditions at t =O as 
well. Consequently, the variation of the rigid body's angular coordinate is determined by ex- 
oression (4.2) with z = 1 ,' 

Function cpO(t,j) coincides with the solutiocof equation rp"ft,i) = M(f) under zero initial con- 
ditions, describing the rigid body's rotation around a fixed axis OXunder the action of the 
force moment M. Thus, when E = 0 the motion of the flywheel located at the end of an elastic 
rod coincides with rotation in the case when the force moment is applied directly to the body. 
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This fact has a simple physical interpretation. An infinitely large vel.ocity of propagation 

of the elastic forces along the shaft corresponds to the parameter value E. = 0. From (4.3) it 

follows that to solve the problem of turning the flywheel through a prescribed angle 'p* when 

e = 0 it is sufficient to select a control M,(t) not exceeding unity in absolute value, such 

that the equalities T T 

'Po(T,i)= (T--)M(z)dz=cp*, ~~+I(,)&,0 
s (4.4) 

are fulfilled at some instant YZ'@. 
0 

Let M,(t) be a function satisfying (4.4) and identically equalling zero outside the in- 

terval [0, T]. Let us investigate the motion of system (4.1) with s+O and control M = 

M,(t). We seek the solution of boundary-value problem (4.1) in the form 

'p = 'PO 0, x) + 0 (4.5) 

where q+,(t,s)is determined by (4.2). Substituting (4.5) into (4-l), we obtain a boundary- 

value problem for Q, 
aw 

e- 5 g-e&I*"(t) (1 -x) - EJI, (t) ata (4.6) 

0 (0, z) = -M* (0) (1 - z), SD (0, z) I at = -iIf*’ (O)(l - z) 

ao, (t, 1)/h = --aw (t, 1) / at2, a@ (t, 0) / az = 0 

Passing in (4.6) to a new variable II, 

1c1 = @ - V,e (1 + e)-kGM* (t) 

we obtain a boundary-value problem with homogeneous boundary conditions 

as* 1 aarp 
==es-- nl;* & --_-M*(1- zj- JI, * 

?fi FE) 

$ (0,x) = - M, (0) [ (1 - x) + A] ) 

z(i+e) 
w (0~4 

c%# (t, 1) / ax = -e-V* (t, 1) / 8x2, 31) (t, 0) / ax = 0 

Using the Fourier method /8/, for $(t,z)we obtain the expression 

4+,x)=--&)[(I-x)++e(l+e)-1x2]- (4.9) 

(4.7) 

(4.8) 

c 2 fG 03s hnx L 
ii, (i? + cc+ A,) s sinh,(t - z)M*(z)dz 

n=1 Cl I/e 

Here h, are the eigenvalues of the corresponding boundary-value problem (4.81, i.e., are the 

roots of the equation 

etgh=--h, h-&n=1,2,... (h,-' = 0 (n-l), n--f 00) (4.10) 

On the basis of (4.7) we obtain a solution of boundary-value problem (4.6) 

(4.11) 

According to (4.11) with respect to time t derivative of 0 equals 

at = M; (t) (I - 1) - * f M, (z) dT + a0 6 T+) 

0 
= 

Iz 
ZJ,” (t) cc6 h,z 

e+cos=Irn ’ J,e (t) = f cm $ (t - 2) 34, (z) dr 
-1 0 

(4.12) 

Let us estimate the integrals Zne(t) and J,"(t) in (4.11) and (4.12). We assume that M,(t) is 

piecewise-continuous and piecewise continuously differentiable on the set of continuity. Let 

t*(i = 1, 2, . . ., N - 1) be the points of discontinuity of M,(t) or of its derivative on the in- 

terval (0, T), to = 0, tiv = T. Then the coefficients I,,c(t) can be given as 

r(f)-1 ti+1 

sin h (t - z) hf, (7) dT + 
(4.13) 
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Here r(t) denotes the maximum index on the points fi of discontinuity of M,(t) and M,' (i). 

where ti< t. Integrating each summand in (4.13) by parts, for 1> T we obtain the estimate 

II,E (t) 1 < p ‘4. 
* 

A = IV2 (1 M, (ti+l - 0) 1 + 1 111, (ti + 0) I) 
i=o 

(4.14) 

sup IM*‘(t)IT 
!E[O, T]\I! 

Here we have reckoned that M,(t) ~0 when t> 2'; by Q we have denoted the set of points of dis- 

continuity of M,(t) and M,’ (t). The estimate for coefficients Jn” (t) 

I JnE (t) I < I/Ah,-’ 
(4.15) 

is proved similarly to (4.14). 
Proceeding from relations (4.11)- (4.15) let us estimate the values of the function 

Q(t,l)and of the derivative 8@((t,l)/at when t ,>, 0. From (4.11) and (4.14) we have an esti- 

mate for the coefficients in the series in (4.11) when z = 1 

(4.16) 

From the property of convergence of series with terms pbnm3 .: O(n-3) (see /12/j follows 

@ (t, 1) Lm 0 (E), 2 E LO, co) 
By an estimate analogous to (4.16) it can be proved that 

(4.17) 

ad, (1, 1) i at = 0 (r/i), t E 10, m) (4.18) 

According to (4.5) the function @(t,z) describes the difference of the motion of a system 

controlled by moment Aaf*(t) for an arbitrary value of parameter E (0< ~4 1) from the motion 

when e = 0. The function @(t. 1) describes the difference of the motion of the rigid body 

(the flywheel), allowing for a small inertia of the rod (the shaft), from the motion with an 

inertialess shaft. Estimates (4.17)and (4.18) show that the difference is a quantity of the 

order of E in the turning angle and a quantity of the order of I/, in the turning velocity on 

the whole time interval t l T LO, cm). This enables us to conclude that if the elastic rod's mom- 

ent of inertia is small in comparison with that of the rigid body, the control law can be cal- 

culated by setting F 0. The error thus obtained is small (in the sense of (4.17) and (4.18)). 
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